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Abstract:  26 

Ultraviolet (UV) radiation has a profound impact on marine life, but historically and 27 

even currently, most ocean color satellites cannot provide radiance measurements in the UV, 28 

and thus UV penetration, in the global ocean. We develop a system (termed as UVISRdl) in 29 

this study, based on deep learning, to estimate remote sensing reflectance (Rrs) at 360, 380, 30 

and 400 nm (collectively termed as near-blue UV bands, nbUV) from Rrs in the visible bands 31 

that are obtained by ocean color satellites. This system is tested using both synthetic and 32 

field-measured data that cover a wide range and large number of values, with the resulted 33 

coefficient of determination close to 1.0 and bias close to 0 between UVISRdl estimated and 34 

known Rrs(nbUV). These results indicate excellent predictability of Rrs(nbUV) from 35 

Rrs(visible) via UVISRdl. The system was further applied to VIIRS (the Visible Infrared 36 

Imaging Radiometer Suite) data with the estimated Rrs(nbUV) evaluated using matchup field 37 

measurements, and obtained a mean absolute relative difference (MARD) at 360 nm of ~14% 38 

for oceanic waters and ~50% for coastal waters. These results are equivalent to those reported 39 

in the literature for satellite Rrs(visible) in oceanic and coastal waters. Examples of the global 40 

distribution of Rrs(nbUV), and subsequently the diffuse attenuation coefficient at the nbUV 41 

bands (Kd(nbUV)), are generated after applying UVISRdl to Rrs(visible) from the VIIRS data. 42 

The system lays the groundwork to generate decade-long Rrs(nbUV) and Kd(nbUV) from 43 

satellite ocean color data, which will be useful and important for both ocean color remote 44 

sensing and biogeochemical studies. 45 

 46 

  47 
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1. Introduction 48 

Ultraviolet (UV) radiation is part of solar energy, which plays complex roles in 49 

biogeochemical processes on land and in ocean (Cullen and Neale 1994; Smith et al. 1992; 50 

Zepp et al. 2007). For instance, high doses of UV can inhibit the growth of plants and 51 

phytoplankton, while low doses under some conditions can be a useful energy source for 52 

phytoplankton photosynthesis (Gao et al. 2012). In addition, phytoplankton may develop 53 

mycosporine-like amino acids (MAAs) in response to UV radiation; these MAAs are strongly 54 

UV absorbing, functioning as a “shield” to protect photosynthesis pigments (Moisan and 55 

Mitchell 2001; Morrison and Nelson 2004). Further, dissolved organic matter (DOM) has a 56 

high absorption capacity for UV radiation and undergoes photochemical conversion under 57 

sunlight, indicating that DOM is very sensitive to sunlight in the UV domain (Piccini et al. 58 

2009; Zepp et al. 2007). UV radiation may also impact the diel vertical movement of 59 

zooplankton (Rose et al. 2012). In the atmosphere, since the most absorbing aerosol species 60 

contribute absorption in the shorter (UV-visible) wavelengths (Kahn et al. 2016), research on 61 

UV radiation will also help improve atmospheric correction (Frouin et al. 2019). As indicated 62 

in Werdell et al. (2018), the future use of hyperspectral spectrometer from UV ( ~350 nm) to 63 

near-infrared (~900 nm) will improve the accuracy in ocean color remote sensing. All these 64 

suggest the necessity to map UV penetration in the global ocean. 65 

The distribution of underwater UV radiation depends on two factors: UV intensity at the 66 

sea surface and the diffuse attenuation coefficients for downwelling irradiance (Kd; m-1) at 67 

these UV wavelengths. The first factor is governed by ozone and atmospheric properties, 68 

which can now be well estimated using satellite measurements (Herman and Celarier 1997; 69 

Kuchinke et al. 2004; Smyth 2011b; Vasilkov et al. 2001). Kd is an apparent optical property 70 

of the ocean; although there are many field measurements (Conde et al. 2000; Dupouy et al. 71 

2018; Overmans and Agustí 2019; Tedetti and Sempéré 2006) and more than four decades of 72 

Kd(visible) from ocean color satellites, there is no standard global Kd(UV) product distributed 73 

by the remote sensing agencies. This is in part because the shortest wavelength of the past 74 

and most of the present-day ocean color satellites is ~410 nm. Thus, there are no global 75 

measurements of oceanic optical properties in the UV domain by satellites. Two decades ago, 76 
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Vasilkov et al. (2001) presented a preliminary oceanic distribution of UV radiation in the 77 

280-320 nm range based on TOMS (the Total Ozone Mapping Spectrometer) and SeaWiFS 78 

(the Sea-viewing Wide Field-of-view Sensor) products, but the empirical coefficients for the 79 

Kd(UV) model were not derived from globally inclusive measurements. Thus its applicability 80 

to the global ocean is unknown. In short, the penetration of UV radiation in the global ocean 81 

is still far from known, nor the impact of UV radiation on marine life on a basin scale. Only 82 

some recent ocean color satellite sensors and the planned PACE (Plankton, Aerosol, Cloud 83 

and ocean Ecosystem, US) include bands in the UV domain. For instance, the OLCI (Ocean 84 

and Land Colour Instrument, Europe) on Sentinel 3 has a band at 400 nm, SGLI (Second 85 

Generation Global Imager, Japan) has one at 380 nm, HY1C (HaiYang-1C, China) has one at 86 

355 nm, and PACE will have hyperspectral measurements starting from 350 nm. 87 

The model to estimate Kd(UV) used in Vasilkov et al. (2001) is based on the “Case 1” 88 

concept (Morel 1988). The authors evaluated Kd at 313, 320, 340, and 380 nm with 15 89 

measurements from the CalCOFI cruises and obtained an uncertainty of ~20%. Similarly, to 90 

fill the information gap of Kd in the UV domain, based on ~50-100 measurements made in the 91 

Mediterranean Sea and Atlantic Ocean, Smyth et al. (2011b) proposed empirical relationships 92 

to estimate Kd at 305, 325, 340, and 380 nm using the total absorption coefficient at 443 nm 93 

(a(443), m-1). Because Kd is dominated by the absorption coefficient (Gordon 1989a), these 94 

approaches require the absorption coefficient of colored dissolved organic matter (CDOM) to 95 

co-vary with the concentration of chlorophyll (Chl), but such a correlation is not always 96 

strong even for oceanic waters (Kahru and Mitchell 1998; Lee and Hu 2006). As pointed out 97 

by Smyth et al. (2011b), the correlation is actually weak between a(443) and Kd(305). This 98 

may not be a surprise, as very different relationships have been found between Kd(310) and 99 

Kd(465) for different waters (Højerslev and Aas 1991), and significantly different Kd(UV) 100 

exists between waters of the Mediterranean Sea and South Pacific for the same Chl (Morel et 101 

al. 2007). Thus, the applicability of such empirical schemes in the global ocean is limited, 102 

although global Chl, a(443), and Kd(490) are adequately available from satellite ocean color 103 

measurements.  104 

In a separate empirical approach, Fichot et al. (2008) developed algorithms to estimate 105 

Kd of 320, 340, and 380 nm based on the SeaWiFS bands after principal component analysis, 106 
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with the 335 data points used for the algorithm development covering waters from the Gulf of 107 

Mexico to many other coastal regions around North America. This algorithm was later 108 

refined to improve the estimates of inshore waters (Cao et al. 2014). While promising results 109 

were reported (Cao et al. 2014; Fichot et al. 2008), basin-scale UV penetration, which is of 110 

the most significance, remains unknown.  111 

Another approach to obtain Kd(UV) is to extrapolate the inherent optical properties 112 

(IOPs) obtained in the visible bands to UV and then estimate Kd(UV) through models 113 

developed based on the radiative transfer equation (Lee et al. 2005). This approach requires a 114 

priori information of the relationships of component IOPs in the UV to the visible domain, 115 

which could be weak. For instance, the existence of MAAs may contribute significantly to 116 

the phytoplankton absorption coefficient (aph) in the short UV wavelengths, while MAAs 117 

may have very low or no absorption in the visible domain (Moisan and Mitchell 2001; Shick 118 

and Dunlap 2002); thus, there is no clear indication of MAAs' existence from aph in the 119 

visible. Also, the approach will require a robust estimate of the spectral shape parameter (Sg; 120 

nm-1) of CDOM absorption coefficient (ag) (Swan et al. 2013; Twardowski et al. 2004), as ag 121 

could be significantly higher in the UV domain (Mannino et al. 2008; Morel and Gentili 2009) 122 

and Sg may also vary with spectral range (Twardowski et al. 2004). All estimates of these 123 

components will bring various levels of uncertainty to Kd(UV).  124 

Given the issues mentioned above, we present a scheme centered on deep learning to 125 

estimate remote sensing reflectance (Rrs; sr-1) in the near-blue UV domain (nbUV hereafter) 126 

from Rrs in the visible (~410-700 nm), with nbUV specifically for 360, 380, and 400 nm. The 127 

reason for the shortest wavelength as 360 nm is in part because UV radiation for wavelengths 128 

shorter than ~350 nm is extremely low (Vantrepotte and Mélin 2006); in part because there is 129 

no clear relationship between aph(λ<350 nm) and aph(visible) (Dupouy et al. 1997; Morrison 130 

and Nelson 2004; Sathyendranath et al. 1987), where the contribution from MAAs could play 131 

a significant role for the short UV wavelengths (Moisan and Mitchell 2001; Shick and 132 

Dunlap 2002); and because more advanced ocean color satellites start measurements around 133 

350 nm. However, these factors do not forbid the development of systems from estimating Rrs 134 

for wavelengths shorter than 360 nm after a better understanding of the relationships between 135 

IOPs of wavelengths shorter than 360 nm and those in the visible bands. 136 
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It is certainly possible to develop a deep-learning-based system to estimate Kd(nbUV) 137 

from Kd(visible), as Kd(visible) can be adequately calculated from Rrs(visible) (Lee et al. 2013; 138 

Lee et al. 2005). We decided not to take this approach here because Rrs is the core input to 139 

estimate water properties and because Rrs(nbUV) can also be applied in some atmospheric 140 

correction algorithms (He et al. 2012; Wang 2007). In addition, Rrs(nbUV) can be used to 141 

improve the inversion of aph and ag in ocean color remote sensing (Wei and Lee 2015; Wei et 142 

al. 2016). Furthermore, as an additional option for cross-validation, Rrs(nbUV) in oceanic 143 

waters obtained from MODIS (the Moderate Resolution Imaging Spectroradiometer) and/or 144 

VIIRS (the Visible Infrared Imaging Radiometer Suite) can be used to compared with those 145 

from OLCI, SGLI, and/or HY1C.  146 

The paper is organized as follows. In Section 2, we describe the overall deep-learning 147 

architecture for estimating Rrs(nbUV), and the data used to train and evaluate the system. In 148 

Section 3, results and evaluations are presented. In Section 4, we show applications of this 149 

system in the global ocean. In Section 5, we summarize our main findings and present future 150 

perspectives. 151 

 152 

2. Data and methods  153 

2.1 A deep-learning system for Rrs(nbUV): UVISRdl  154 

For easy data processing, especially because of nonlinear relationships of Rrs between 155 

different wavelengths, we take an approach centered on deep learning for estimating 156 

Rrs(nbUV) from Rrs(visible). Figure 1 presents a schematic concept of this system, termed 157 

UVISRdl.  158 

Like all deep-learning systems, UVISRdl is composed of one input layer, various hidden 159 

layers associated with many numbers of neurons, and one output layer. A key component of 160 

any deep-learning system is the neural network model, and such models have been developed 161 

in the past decade (Abadi et al. 2016; Géron 2019; Ketkar 2017; Steiner et al. 2019; Swami 162 

and Jain 2011). Here, based on data characteristics, we selected the Keras model (Chollet) for 163 

UVISRdl. Keras is a deep-learning Application Programming Interface written in Python; it is 164 
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publicly available and running on top of the machine-learning platform TensorFlow (Chollet ; 165 

Ketkar 2017). The number of hidden layers and the number of neurons of each layer were 166 

determined following the concept of minimum loss (Géron 2019), a common approach for 167 

developing a deep-learning system. Eventually, a system of four hidden layers, with 300 168 

neurons for Layer-1, 75 for Layer-2, 38 for Layer-3, and 18 for Layer-4, is found to provide 169 

the best performance for UVISRdl.  170 

For the training of UVISRdl, we employed the Rectified Linear Unit (ReLu) function for 171 

the activation function of each layer (Krizhevsky et al. 2012), which can largely avoid 172 

gradient explosion and gradient disappearance (He et al. 2015). The optimization function of 173 

the training used is the Adam algorithm (Kingma and Ba 2014). The setting of the learning 174 

rate usually involves an adjustment process, in which the highest possible learning rate is 175 

manually selected (Zeiler 2012). As a result, a learning rate of 2×10-5 is used in this study. 176 

Training of UVISRdl was eventually achieved when the loss function converges and the 177 

iteration stops. 178 

To avoid any interference between the nbUV wavelengths, a separate UVISRdl was 179 

trained specifically for each of the three nbUV bands in this effort. Further, given different 180 

spectral band settings of satellite ocean color sensors, separate UVISRdl was developed for 181 

each specific satellite of interest. 182 

 183 

2.2 Data 184 

For all neural networks or deep-learning schemes, a large and inclusive dataset is crucial 185 

for its training. Here, we use numerically synthesized data to develop UVISRdl, which is 186 

further evaluated using both synthesized and field-measured data. 187 

2.2.1 Training data 188 

Following IOCCG Report #5 (IOCCG-OCAG 2003; IOCCG 2006), we synthesized a 189 

large (200,000 sets) dataset containing a wide range of IOPs in the 350-800 nm range (5-nm 190 

resolution), which were then fed into a model for Rrs (Lee et al. 2004) to generate 200,000 Rrs 191 

spectra. As most of the specifics for this synthesizing method are available in the literature 192 
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(IOCCG-OCAG 2003; IOCCG 2006), we provide only some of the components and 193 

synthesizing steps in Appendix A for reference. A few key features are summarized below: 194 

(1) For the IOPs spectra, while the contributions of pure seawater (Lee et al. 2015a; 195 

Mason et al. 2016; Zhang and Hu 2009a) are considered constants, the absorption and 196 

backscattering contributions from phytoplankton pigments, CDOM, and detrital-sediments 197 

are considered variables. These component IOPs, except for the spectrum of aph, can be 198 

expressed as a simple function (exponential or power-law) of wavelength (Bricaud et al. 1981; 199 

Gordon and Morel 1983). Therefore, to best maintain the natural variation of bulk IOPs, aph 200 

spectra were not modeled mathematically; instead, they were selected from >4,000 aph 201 

spectra stored in the SeaBASS (the Sea-viewing Wide Field-of-view Sensor Bio-Optical 202 

Archive and Storage System) and our own collections. To ensure coverage from oligotrophic 203 

oceanic waters to coastal/inland eutrophic waters, we set aph(440) to a range of 0.001-20.0 204 

m-1. Therefore, a wide range of aph(λ), in both magnitude and spectral shapes, were utilized in 205 

data synthesizing. 206 

(2) As described in Appendix A and IOCCG Report #5 (IOCCG-OCAG 2003; IOCCG 207 

2006), for each aph(440) value, constrained random parameters were used to model the 208 

contributions of other component IOPs. In this way, it better mimics the variabilities of these 209 

components in natural environments while reducing likely unrealistic combinations, such as 210 

very low aph(440) with an extremely high absorption by CDOM. 211 

Figure 2a shows examples of the synthesized Rrs spectra. The dataset of 200,000 212 

IOPs-Rrs  is divided randomly by an 8:2 ratio, with 160,000 for the training of UVISRdl and 213 

40,000 for the evaluation of UVISRdl. Table 1 provides an overall picture of the data range 214 

used for the evaluation. Visible bands used are 410, 440, 490, 550, and 670 nm for VIIRS, 215 

410, 440, 490, 510, 555, and 670 nm for SeaWiFS, and 410, 440, 490, 530, 550, and 670 nm 216 

for MODIS. The spectral bands of these satellite sensors have a bandwidth of 10-20 nm, and 217 

the band centers are not exactly those specified here. Thus, to apply the trained UVISRdl for 218 

Rrs products from satellites, Rrs of the satellite bands were calculated for the 200,000 sets of 219 

hyperspectral Rrs after applying each satellite sensor's band-specific response functions. 220 

Subsequently, for example, nonlinear empirical conversions were developed to transfer 221 

VIIRS Rrs of band 411 nm to Rrs(410), which was also done for the other bands. Therefore, 222 
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for each satellite, the same UVISRdl can be applied to both field and satellite Rrs. 223 

2.2.2 Validation data 224 

In addition to the above-mentioned synthesized data for the validation of UVISRdl, a 225 

wide range of field-measured Rrs are also used to test the performance of UVISRdl. Figure 2b 226 

shows examples of measured Rrs spectra (from a total of 202), which cover waters from 227 

oceanic to turbid coastal regions. Details of the method for these measurements can be found 228 

in Wei et al. (2015), where the skylight-blocked approach (SBA) (Lee et al. 2013; Tanaka et 229 

al. 2006) was followed to obtain field Rrs. The uncertainty of SBA-measured Rrs is generally 230 

<5% in oceanic waters, and ~10% in turbid, highly productive waters at the blue bands (Lin 231 

et al. 2020). While the SBA measurements mostly cover coastal waters, the hyperspectral 232 

(344-749 nm, ~0.5-nm resolution) Rrs data measured at the Marine Optical Buoy (MOBY) 233 

(Clark et al. 1997), a typical oligotrophic site, were also accessed (from the NOAA 234 

CoastalWatch, https://www.star.nesdis.noaa.gov/socd/moby/filtered_spec/) to evaluate 235 

UVISRdl. The quality of the MOBY data is classified into four classes: bad and cloudy, 236 

suspicious, bad, and good. In this study, we used 6,184 Rrs spectra with the highest quality. 237 

 238 

2.3 Accuracy Assessment 239 

In addition to the coefficient of determination (R2) in linear regression analysis, the 240 

accuracy of the resulted Rrs(nbUV) is assessed with the following statistical measures: 241 

root-mean-square difference (RMSD), mean absolute relative difference (MARD), and bias. 242 

They are defined as follows:  243 

RMSD = �∑ (	
��,� − 	�
�,�)����� N , (1)

MARD = 1N � �	
��,� − 	�
�,��	�
�,�
�
��� , (2)

bias = 1N � !	
��,� − 	�
�,�",�
���  (3)

where Xest,i and Xmea,i are predicted and known (synthesis, or in situ) values of Rrs(nbUV), 244 

respectively, and N is the number of sample pairs. 245 
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 246 

3. Results of Rrs(nbUV) from UVISRdl  247 

3.1 Synthetic data 248 

Rrs(nbUV) from UVISRdl is first evaluated using the 40,000 synthetic data, with results 249 

for VIIRS spectral settings showing in Figure 3 (a-c) as examples. Similar results were 250 

obtained for SeaWiFS and MODIS, with statistical measures given in Table 2. Generally, for 251 

these synthesized data, the values of R2 for the three wavelengths and three satellites are all 252 

close to 1.0, with values of RMSD and bias close to 0 and values of MARD under ~0.3%. 253 

These results indicate extremely high accuracy in predicting Rrs(nbUV) from Rrs data in five 254 

or six visible bands. This is due to the fact that Rrs is determined by the total absorption and 255 

backscattering coefficients. Because the spectral variations of CDOM absorption and particle 256 

backscattering are highly spectrally related, and because the spectral shapes of phytoplankton 257 

absorption show general patterns at least in the 350-700 nm domain, thus Rrs(visible) has 258 

some spectral “messages” or connections with Rrs at 360, 380, and 400 nm, although such 259 

spectral connections are likely more complex than that can be explained by simple nonlinear 260 

functions. This spectral interconnection was demonstrated in Lee et al. (2014) and Sun et al. 261 

(2015), where Rrs spectrum in the 400-800 nm with a resolution of 5 nm could be well 262 

constructed from Rrs measured at 15 bands in this spectral domain. Also, decades ago Austin 263 

and Petzold (1990) showed Kd(visible) could be estimated to some degree from using Kd(490) 264 

alone. 265 

We would like to emphasize that the relationships between Rrs(nbUV) and Rrs(visible) of 266 

the synthesized dataset are complex and nonlinear, as presented in Figure 4. As a validation 267 

of the synthesized data, Figure 4 also includes Rrs from field measurements (both SBA and 268 

MOBY), which shows that field data are well within the envelope of the synthesized Rrs. This 269 

comparison suggests that the synthesized dataset is inclusive, although some combinations of 270 

IOPs potentially may not exist or are extremely rare in natural aquatic environments. The two 271 

clusters between Rrs(nbUV) and Rrs(440) represent the impact of the two driving component 272 

IOPs on Rrs spectral shapes in the nbUV: aph and ag. Specifically, for the ~350-440 nm range, 273 
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ag increases exponentially with the decrease of wavelength, but aph generally decreases with 274 

the decrease of wavelength. Thus, for waters having higher contributions from ag than from 275 

aph, a(360) will be significantly higher for the same a(440). Consequently, Rrs(360) will be 276 

lower for the same Rrs(440). This contrast represents a common situation in coastal waters 277 

(depth < 1,000 m), which will be shown later. 278 

Because Rrs(360) does not co-vary with Rrs(440), these patterns show that uncertainty 279 

will be large if Rrs(440) alone is used to predict Rrs(nbUV); and this uncertainty would 280 

increase if the gap between the target and reference wavelengths becomes wider. However, as 281 

shown earlier, the R2 values are close to 1.0 when Rrs(visible) was fed into a deep-learning 282 

system to obtain Rrs(nbUV), indicating that nonlinear connections exist between Rrs(nbUV) 283 

and Rrs(visible) and that deep learning has the capability to capture such relationships, 284 

although not in an explicit way.  285 

It is also interesting that although VIIRS has no band around 510-530 nm compared to 286 

SeaWiFS and MODIS, the statistical measures for the predicted Rrs(nbUV) from VIIRS 287 

Rrs(visible) are similar to that of the two earlier sensors. This result suggests that the band 288 

around 510-530 nm is not critical for estimating Rrs(nbUV) from Rrs(visible), at least for the 289 

data tested here. 290 

 291 

3.2 Field-measured data 292 

We further evaluated UVISRdl using field-measured data, with Figure 5 (a-c) showing 293 

the results for SBA measurements and Figure 6 (a-c) for MOBY measurements, with the 294 

VIIRS spectral bands as examples. Performances of the two datasets for MODIS and 295 

SeaWiFS bands are included in Table 2. Similar to the performance of the synthetic dataset, 296 

for SBA measurements, the R2 values for the three Rrs(nbUV) and three satellites are ~0.99, 297 

with RMSD and bias close to 0. The MARD values are ~2%, ~4%, and ~10% for 400, 380, 298 

and 360 nm, respectively, much higher than those of the synthesized data. The higher MARD 299 

values are not surprising for the following reasons: 1) the measured Rrs is never error-free; 2) 300 

the uncertainty in field measured Rrs is always around a few percent even under the best 301 

arrangement with SBA (Lin et al. 2020) and can be around 10% in the blue for highly 302 
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absorbing waters (Lin et al. 2020); and 3) likely insufficient representation of natural Rrs in 303 

the synthesized data for the training of UVISRdl, which could be refined in the future after 304 

obtaining more high-quality measurements of Rrs(UV-visible) in broad aquatic environments. 305 

The less than 10% MARD and close to 0 bias indicate highly reliable Rrs(nbUV) predicted by 306 

UVISRdl from Rrs(visible). 307 

Excellent results are also found with MOBY-measured Rrs (see Figures 6a-6c), where 308 

the RMSD and bias are close to 0, and the MARD values are less than ~9% for the estimated 309 

Rrs(nbUV) by UVISRdl. The R2 value (0.88) for Rrs(360) is slightly lower than that of the 310 

SBA dataset, which is in part due to the much narrower range (~0.005-0.020 sr-1) of Rrs(360) 311 

from a single site. On the other hand, it also indicates potentially larger uncertainties for 312 

wavelengths deeper in the UV domain, especially, as shown below, if MAAs are present. 313 

Note that a result of ~9% MARD for Rrs(360) is close to the highest accuracy that can be 314 

achieved in field measurements (Lin et al. 2020; Zibordi and Talone 2020). 315 

 316 

3.3 Potential impact of absorption by MAAs 317 

As we stated earlier, we set the shortest wavelength for Rrs(nbUV) at 360 nm, in part 318 

because that the absorption coefficient of MAAs in the 300-350 nm range can be significantly 319 

higher (for instance, up to a factor of ~4) than that at 440 nm (see Figure 1B in Moisan and 320 

Mitchell 2001). In particular, because MAAs have no or low contributions to aph in the visible, 321 

there is no clear relationship between aph(visible) and aph(300-350). On the other hand, 322 

MAAs may exist in many phytoplankton groups, particularly in dinoflagellates L. polyedra 323 

and Phaeocystis Antarctica (Moisan and Mitchell 2001; Vernet and Whitehead 1996). Thus, 324 

the spectral information of aph in the visible is insufficient to accurately predict aph in the 325 

300-350 nm domain due to the potentially existence of MAAs. Consequently, errors in the 326 

estimated aph(300-350) will be propagated to the estimated total absorption and then 327 

Rrs(300-350). The empirical algorithms to estimate Kd in the wavelengths of ~320 nm using 328 

Rrs in the visible bands developed earlier (Fichot et al. 2008; Smyth 2011a; Vasilkov et al. 329 

2001) likely did not encounter waters having strong MAAs, or the data used were dominated 330 

by strong absorption due to CDOM. Because Kd is primarily determined by the absorption 331 
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coefficient, such empirical algorithms for the estimate of Kd(300-350) could result in larger 332 

uncertainties than those for wavelengths in the nbUV when MAAs are present. 333 

For the aph spectra used in our data synthesizing, very few spectra show contributions of 334 

MAAs at 360 nm, where the aph(360)/aph(440) ratio is 0.66±0.35, although it is in a range of 335 

0.15-3.82. On the other hand, the ratio of ag(360)/ag(440) is ~3.3 for an ag slope of 0.015 336 

nm-1. That means for a situation aph(440) = ag(440), MAAs contribute to the most ~50% to 337 

a(360) when aph(360)/aph(440) is also around 3.0. For most situations where aph(360)/aph(440) 338 

is less than 1.0, the value of a(360) is dominated by that from ag(360); thus, it is feasible to 339 

reasonably predict a(360) from a(visible), and then Rrs(360) from Rrs(visible). As would be 340 

expected, there could be larger uncertainties in the estimated Rrs(360) if there are strong 341 

contributions from MAAs while the contribution of ag is secondary. 342 

4. Application to ocean color satellites 343 

4.1 Global Rrs(nbUV) from VIIRS 344 

With the developed and validated UVISRdl, it is possible to generate global Rrs(nbUV) 345 

from past and current ocean color satellite measurements. For example, Figure 7 shows 346 

global distributions of Rrs(nbUV) predicted from VIIRS. Note that both NOAA CoastWatch 347 

(https://coastwatch.noaa.gov/cw/index.html) and NASA OBPG 348 

(https://oceancolor.gsfc.nasa.gov/) can provide consistent VIIRS ocean color products, but  349 

for easier spatial matchup with the products from SeaWiFS and MODIS, seasonal composites 350 

of Rrs(visible) from NASA OBPG were acquired and utilized here.  351 

Not surprisingly, Rrs(nbUV) is very high in the open ocean, especially in the ocean gyres, 352 

a result of significantly low CDOM and phytoplankton in the oligotrophic ocean (Hu et al. 353 

2012; Siegel et al. 2005). The predicted Rrs(nbUV) in the South Pacific Gyre (the star in 354 

Figure 7b) is ~0.022 sr-1, which is consistent with that reported in Tedetti et al. (2010), 355 

although the years of measurements are different.  356 

Expectedly, Rrs(nbUV) is significantly lower in coastal waters, but even for Rrs(360), it 357 

is higher than zero in many coastal regions (see Figure 8 for example). Such distributions 358 

suggest caution in assuming Rrs(nbUV) as zero in the process of atmospheric correction (He 359 
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et al. 2012), where other approaches (Wang and Jiang 2018; Wei et al. 2020) could be used 360 

for the estimation of Rrs in the blue bands. 361 

 362 

4.2 Evaluation of VIIRS Rrs(nbUV) with in situ measurements 363 

We further compared Rrs(nbUV) from VIIRS with matchup in situ measurements (82 364 

matchups for SBA, and 730 for MOBY) to assess the quality of Rrs(nbUV) estimated from 365 

satellite data. The SBA measurements were obtained mainly in coastal regions (see Figure 9 366 

for locations of measurements) in the period of 2012-2019, with matchup limited to within ±5 367 

hours and 3x3 VIIRS pixels between satellite and in situ measurements (Werdell and Bailey 368 

2005). Figures 10 and 11(a-f) present scatterplots between predicted and measured Rrs(nbUV) 369 

for visual comparison, with statistical measures presented in Table 3. In view that neither in 370 

situ nor satellite Rrs(nbUV) can be considered as “truth,” the mean absolute unbiased relative 371 

difference (MAURD) is calculated to check consistency between the two determinations.  372 

MAURD = �� ∑ $%&'&()%&'&*%&'&(+%&'&*$ × 2��       (4) 373 

where Data1 and Data2 represent data from two independent determinations, respectively. 374 

Overall, for these Rrs(nbUV) the MAURD values are between 0.31 (at 400 nm) and 0.40 375 

(at 360 nm) for the SBA matchups, with biases of ~0.0002-0.0005 sr-1. For the MOBY 376 

matchups, the MAURD values are around 0.12, with biases of ~0.00023-0.0012 sr-1. 377 

Unsurprisingly, these measures are worse than those when evaluating Rrs(nbUV) using 378 

field-measured data, as there are other uncertainties and/or errors contributing to these 379 

differences, which include not-exact spatial-temporal matchup and uncertainties in 380 

atmospheric correction, especially in coastal waters (IOCCG 2010; Wang 2007). For these 381 

likely error sources related to satellite data, Figures 10 and 11 (d-f) include comparisons of 382 

the blue bands (410, 440, and 490 nm), where the MAURD values are ~0.21-0.29 and RMSD 383 

is ~0.0012 sr-1 for the SBA matchups, which are just slightly better than those of Rrs(nbUV). 384 

Note that there are a few stations where VIIRS Rrs(410, 440, 490) are much lower than the in 385 

situ Rrs measured by the SBA. As Rrs(nbUV) is estimated based on the values in the visible 386 

bands, such lower values from VIIRS will lead to lower values of Rrs(nbUV), which then 387 

contributes to higher MAURD at the nbUV bands, especially in the coastal waters. For the 388 
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MOBY matchups, a fixed location of oceanic waters, the MAURD values at the blue bands 389 

(410-490 nm) are just slightly better than those at the nbUV bands (360-400 nm), with the 390 

RMSD values around 0.0022 sr-1 for the wavelengths of 360-410 nm. The low R2 value for 391 

these matchups results from the narrow dynamic range of the Rrs values, where the water 392 

properties of such a system do not vary significantly. Overall, because of the difficulties and 393 

uncertainties in spatial-temporal matching as well as atmospheric correction and these 394 

performance measures being similar to those reported in the literature when evaluating Rrs 395 

from ocean color satellites (Antoine et al. 2008; Mélin et al. 2016; Zibordi et al. 2009), these 396 

results indicate satisfactory Rrs(nbUV) from VIIRS, although it is certainly necessary to carry 397 

out more evaluations in the future.    398 

 399 

4.3 Kd(nbUV) from ocean color satellites  400 

After obtaining Rrs(nbUV) from VIIRS, it is then possible to estimate Kd(nbUV) 401 

semi-analytically following Lee et al. (2005). The total absorption (a) and backscattering (bb) 402 

coefficients at the nbUV-visible bands will be derived first from Rrs(nbUV-Visible) using a 403 

semi-analytical algorithm (Lee et al. 2002; Wang et al. 2009; Werdell et al. 2013). Since Kd is 404 

a function of a and bb (Gordon 1989b; Lee et al. 2005; Lee et al. 2013), it is then 405 

straightforward to calculate Kd(nbUV) when a(nbUV) and bb(nbUV) are known. As an 406 

example, Figure 12 shows global distributions of Kd(360) and Kd(380) (with the Sun at zenith) 407 

derived from VIIRS for seasonal composite of October to December 2012. At the center of 408 

the South Pacific Gyre, Kd(360) is ~0.031 m-1, and Kd(380) is around ~0.025 m-1 during this 409 

period, which show general consistency with those reported previously (Morel et al., 2007), 410 

although the field measurements were taken in Nov. 2004. As stated earlier, there are other 411 

algorithms developed to estimate Kd in the UV domain using Rrs in the visible (Fichot et al. 412 

2008; Smyth 2011a; Vasilkov et al. 2001). It is thus important to evaluate the performances of 413 

these algorithms for the global ocean, which is out of the scope of this effort. 414 

 415 
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4.4 Further implications for the “Case 1” approach in oceanic waters 416 

As aforementioned in the introduction, the earlier approaches (Højerslev and Aas 1991; 417 

Smyth 2011b; Tedetti et al. 2010; Vasilkov et al. 2005) estimated Kd(nbUV) using Chl or Kd 418 

(or a) at one visible band as the input, which is based on the “Case 1” concept proposed by 419 

Morel and Prieur (1977) decades ago, where the inherent (sometime even the apparent) 420 

optical properties could be estimated using Chl alone (Morel 1988; Morel and Maritorena 421 

2001). However, as shown in Højerslev et al. (1991) and Morel et al. (2007) for various 422 

oceanic waters, significantly different relationships between Kd(UV) and Kd(visible) or 423 

between Kd(UV) and Chl exist; thus, such a scheme to predict Kd(UV) from one variable runs 424 

into difficulties for the global ocean. To highlight this difficulty, Figure 13 shows scatterplots 425 

between Kd(360), Kd(380) and Kd(490), respectively, where the R2 values are ~0.8 even for 426 

the waters with bottom depth deeper than 1,000 m. For Rrs of global oceans, the R2 values are 427 

~0.89 between Rrs(360), Rrs(380) and Rrs(440) obtained from the VIIRS (see Figure 14). 428 

These patterns clearly indicate that not all Rrs(nbUV) or Kd(nbUV) of oceanic waters can be 429 

accurately predicted from Rrs(440) or Kd(490), respectively. This further echoes that oceanic 430 

waters are not necessarily “Case 1”  (IOCCG 2000; Lee and Hu 2006); thus, a scheme to 431 

estimate Rrs or Kd in the UV domain based on the “Case 1” assumption may result in large 432 

uncertainties. 433 

 434 

4.5 Consistency of Rrs(UV) among SeaWIFS, MODIS, and VIIRS 435 

Following the same deep-learning approach, UVISRdl systems were developed for the 436 

spectral bands of SeaWiFS and MODIS (which is certainly also possible for other satellites 437 

after adjusting UVISRdl accordingly). It is then interesting to see if the Rrs(nbUV) products 438 

from these satellites are consistent. Observations by SeaWiFS and MODIS (Aqua) are 439 

overlapped between 2002 and 2010; observations by MODIS (Aqua) and VIIRS (SNPP) are 440 

overlapped from 2012 onward. We thus picked October to December in 2005 to compare 441 

SeaWIFS and MODIS and used October to December in 2012 to compare MODIS and 442 

VIIRS. The unbiased relative difference (URD) of Rrs(nbUV) between two satellite sensors is 443 

calculated to evaluate the consistency, with URD defined as: 444 
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URD = /
0�12*)3456//
0�12*+3456/ × 2, (5)

where Sensor2 is either for SeaWiFS or VIIRS.  445 

Figure 15 (a, c, e) shows the global distributions of URD calculated between MODIS 446 

and VIIRS Rrs(nbUV); Figure 15 (b, d, f) shows the histograms of URD at each nbUV band; 447 

and Figure 16a presents scatterplots of Rrs(nbUV) between VIIRS and MODIS at 360 nm. We 448 

can see that Rrs(nbUV) from the two pairs of sensors agree with each other very well, where 449 

the URD values are generally around 0 in the tropical and subtropical regions, but higher near 450 

the polar regions and many coastal areas (e.g., west coast of India). This higher value reflects 451 

the strong spatial variation of coastal water properties and different spatial and temporal 452 

coverages of these satellite sensors. The average URD(360) is -0.017, with R2 value as 0.95, 453 

and the slope is close to 1.0 in the linear regression (see Figure 16a). These measures are 454 

similar to those at 440 nm (see Figure 16b), both being independent measurements. 455 

Furthermore, Figures 16c and 16d compare the Rrs(360) and Rrs(440) between SeaWiFS and 456 

MODIS, demonstrating similar statistical measures at 360 nm and 440 nm, which is parallel 457 

to the comparison between MODIS and VIIRS. These evaluations indicate highly consistent 458 

Rrs(nbUV) among these satellite ocean color measurements, as long as Rrs(visible) is 459 

consistent among them. 460 

 461 

5. Summary and future perspectives 462 

To fill the data gap of UV penetration in the global ocean, especially for measurements 463 

after the launch and operation of modern ocean color satellites, a deep-learning-based system 464 

(UVISRdl) is developed to estimate Rrs at the near-blue UV bands (specifically at 360, 380, 465 

and 400 nm in this study) with Rrs in the visible (410-670 nm) as the input. We show that 466 

UVISRdl-estimated Rrs(nbUV) agree very well (<10% difference) with those from 467 

radiometric measurements, although larger differences are found between VIIRS Rrs(nbUV) 468 

and matchup in situ data when measurements were taken in coastal regions. With estimated 469 

Rrs(nbUV) and known Rrs(visible) of the global oceans from ocean color satellites, 470 

Kd(nbUV-visible) of the global oceans can then be calculated semi-analytically; thus, 471 



18 

 

penetration of radiation in the nbUV domain in the global oceans can be clearly characterized 472 

through the combination of UV radiation products at the ocean surface. Such information will 473 

be useful for a broad range of biogeochemical studies. In addition, the availability of 474 

Rrs(nbUV) can help both atmospheric correction and decomposition of the total absorption 475 

coefficient into its components. 476 

This study is an initial step to estimate Rrs(nbUV), using a deep-learning scheme, from 477 

Rrs at the available visible bands of ocean color satellites, where its evaluation is still limited. 478 

It is important and necessary to evaluate Rrs(nbUV) obtained by UVISRdl, and subsequently 479 

Kd(nbUV) with more inclusive global measurements to obtain a comprehensive 480 

characterization and understanding of UVISRdl for ocean color satellites. Some current ocean 481 

color satellites, e.g., the OLCI, SGLI, and HY1C, and other planned future ocean color 482 

satellites, e.g., the PACE, cover a few bands in the 350-400 nm range. It will thus be valuable 483 

to evaluate Rrs(nbUV) obtained from UVISRdl by comparing to Rrs(nbUV) measured directly 484 

by satellites, although both determination has its own uncertainties. While Rrs(nbUV) from 485 

UVISRdl should not be considered as a means to replace Rrs(nbUV) from satellite 486 

measurements at the nbUV bands, it nevertheless can be an important data source to fill the 487 

data gaps in the past and present and a data source when atmospheric correction runs into 488 

difficulties in the nbUV bands. 489 

 490 
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Appendix A: 760 

To train UVISRdl, we created a large synthetic dataset covering wide ranges of inherent 761 

optical parameters (IOPs) and remote sensing reflectance (Rrs). The generation of this dataset 762 

generally follows the IOCCG Report 5 (IOCCG-OCAG 2003; IOCCG 2006) for synthesizing 763 

wide ranges of IOPs spectra, but an analytical model (Lee et al., 2004) was used to calculate 764 

Rrs from these IOPs, as generating such a large dataset with the Hydrolight software will take 765 

too long. However, this Rrs model was developed based on Hydrolight simulations where the 766 

accuracy is within ~1% on average, so the error of using an analytical formula for Rrs on the 767 

deep-learning system of this study is negligible. 768 

 Following the description in IOCCG-OCAG (2003), the absorption (a) and 769 

backscattering (bb) coefficients, the two key component IOPs for Rrs, are modeled as 770 

7(8) = 79(8) + 7;<(8) + 7=>(8)+7?(8). (A1a)

AB(8) = AB9(8) + AB;<(8) + AB=>(8). (A1b)

Here subscripts “w, ph, dm, g” represent pure seawater, phytoplankton pigments, detritus and 771 

minerals, and gelbstoff (e.g., CDOM), respectively. 772 

Values of aw(λ) were taken from combinations of the literature. Specifically, aw values of 773 

350-550 nm are from Lee et al. (2015b), 551-725 nm from Pope and Fry (1997), 726-800 nm 774 

from Smith and Baker (1981). From more than 4,000 measured aph(λ) spectra (350-800 nm, 5 775 

nm step), 720 aph(λ) spectra were selected with aph(440) in a range of ~0.001-39.0 m-1, thus 776 

covering oceanic waters to waters with phytoplankton blooms. 777 

Following the practice taken by the IOCCG-OCAG (2003), adm and ag were modeled as 778 

7=>(8) = 7=>(440)E)FGH(I)JJK), (A2a)

7?(8) = 7?(440)E)FL(I)JJK), (A2b)

where the slope parameters Sdm (~0.007-0.015 nm-1) and Sg (~0.01 - 0.02 nm-1) were taken as 779 

random values as in IOCCG-OCAG (2003), and adm(440) and ag(440) were modeled as 780 

7=>(440) = M�×7;<(440), (A3a)

7?(440) = M�×7;<(440). (A3b)

Parameters p1 and p2 were controlled random values, generating reasonable adm(440) and 781 

ag(440) values for a given aph(440) (IOCCG-OCAG 2003). 782 
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Values of bbw(λ) were taken from the literature (Zhang and Hu 2009b). Spectra of bbph 783 

were also modeled as in IOCCG-OCAG (2003), where bbph is aa 784 

AB;<(8) = N;<(O;<(8) − 7;<(8)), (A4a)

O;<(8) = MP×O;<(550)(5508 );R , (A4b)

and Bph is the backscattering ratio of phytoplankton and a value of 1% was taken. Parameters 785 

p3 and p4 were random values within given ranges as in IOCCG-OCAG (2003). Similarly, 786 

spectra of bbdm were modeled as 787 

AB=>(8) = 0.0183MU×A=>(550)(5508 );V , (A5)

with p5 and p6 also random values within given ranges. 788 

The relationship between rrs and IOPs from Lee et al. (2004) was employed: 789 

W2�(8) = g9 AYZ(8)7(8) + AY(8) + g; AY[(8)7(8) + AY(8), (A6a)

g;(8) = GK ]1 − G� exp a−G� AY[(8)7(8) + AY(8)bc, (A6b)

Here gw is the model parameter related to molecular scattering, and gp is the model parameter 790 

related to particle-scattering phase function, and values of G0-2 are constants for a given light 791 

geometry and particle phase function. Rrs(λ) can be computed from rrs(λ) (Gordon et al. 1988) 792 

with a relationship as 793 

def(8) = 0.52 Wef(8)1 − 1.7 Wef(8). (A7)

In the above system for the calculation of Rrs, aph is a free variable, while parameters p1-p6 are 794 

determined randomly in constrained ranges for each aph. The generation of these constrained 795 

random values followed that in IOCCG-OCAG (2003), and described in Craig et al. (2020). 796 

The 720 aph(λ) spectra were divided into 12 groups, with each group having its own aph(440) 797 

range. These aph(λ) spectra were normalized to its aph(440) to obtain aph spectral shapes. Total 798 

of 200,000 aph(λ) were then generated by multiplying aph(440) to these spectral shapes, with 799 

aph(440) randomly varying in a range of 0.001-20.0 m-1, while the spectral shapes were 800 

selected based on the aph(440) value. Subsequently 200,000 groups of hyperspectral 801 

a(λ)&bb(λ) were generated following Eqs. A1-A5, and then 200,000 hyperspectral Rrs spectra 802 

were generated with Eqs. A6-A7, where the resulted Rrs(550) is in a range of ~0.0008-0.090 803 

sr-1. 804 
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Table Captions: 805 

 806 

Table 1. Range of remote sensing reflectance (taking Rrs(555) as an example) used for 807 

evaluation of UVISRdl.. CV is the ratio of standard deviation to the mean. 808 

 809 

Table 2. Statistical measures of UVISRdl after being applied to both synthetic and field 810 

measured datasets. 811 

 812 

Table 3. Statistical measures between matchup VIIRS and measured Rrs. N is the number of 813 

matchup measurements.814 
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Figure Captions: 815 

 816 

Fig. 1. Schematic chart of the deep-learning-based system for estimating Rrs(nbUV) using 817 

Rrs(visible): UVISRdl. 818 

 819 

Fig. 2. Examples of Rrs spectra used in this study: (a) synthesized Rrs spectra for the 820 

development and validation of UVISRdl, and (b) measured Rrs spectra to evaluate UVISRdl. 821 

 822 

Fig. 3. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the synthetic 823 

dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 824 

 825 

Fig. 4. Relationship between Rrs(nbUV) and Rrs(440) of both synthetic and measured (SBA 826 

and MOBY) datasets: (a) Rrs(360) vs Rrs(440), (b) Rrs(380) vs Rrs(440), and (c) Rrs(400) vs 827 

Rrs(440). 828 

 829 

Fig. 5. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured 830 

SBA dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 831 

 832 

Fig. 6. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured 833 

MOBY dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 834 

 835 

Fig. 7. Global distribution of seasonal composite Rrs(nbUV) for the period of October to 836 

December 2012 obtained from VIIRS: (a) Rrs(360), (b) Rrs(380) (white star showing 837 

measurements during November 2004), (c) Rrs(400), and (d) Rrs(410). 838 

 839 

Fig. 8. Same as Fig. 7, except for showing Rrs(360) of three coastal regions. 840 

 841 

Fig. 9. Locations of matchup field measurements (SBA and MOBY) to evaluate Rrs(nbUV) 842 

from VIIRS. 843 

 844 

Fig. 10. Comparison between VIIRS and field measurements SBA Rrs: (a) Rrs(360), (b) 845 
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Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490). 846 

Fig. 11. Comparison between VIIRS and field measurements MOBY Rrs: (a) Rrs(360), (b) 847 

Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490). 848 

 849 

Fig. 12. Global distribution of seasonal composite Kd(nbUV) for the period of October to 850 

December 2012 obtained from VIIRS: (a) Kd(360), and (b) Kd(380). 851 

 852 

Fig. 13. Relationships between Kd(nbUV) and Kd(490) of global waters obtained from VIIRS: 853 

(a) Kd(360) vs Kd(490), and (b) Kd(380) vs Kd(490). Color dots are for bottom depth > 1,000 854 

m, and gray dots, for bottom depth < 1,000 m. The R2 values are for the data with depth > 855 

1,000 m. 856 

 857 

Fig. 14. Same as Fig. 13, except between Rrs(nbUV) and Rrs(440): (a) Rrs(360) vs Rrs(440), 858 

and (b) Rrs(380) vs Rrs(440). Color dots are for data with bottom depth > 1,000 m, and gray 859 

points for data with bottom depth < 1,000 m.  860 

 861 

Fig. 15. Global distribution (left) and histogram (right) of URD(nbUV) between MODIS and 862 

VIIRS for seasonal data of October–December 2012: (a) 360 nm, (b) 380 nm, and (c) 400 863 

nm. 864 

 865 

Fig. 16. Comparison of Rrs between MODIS and VIIRS (a, b), and between MODIS and 866 

SeaWiFS (c, d). 867 

 868 

 869 

  870 

  871 
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Table 1. Range of remote sensing reflectance (taking Rrs(555) as an example) used for 872 

evaluation of UVISRdl.. CV is the ratio of standard deviation to the mean. 873 

 874 

Data 
Data Sources 

(Data Number) 
Band Min (sr-1) Max (sr-1) Mean (sr-1) CV 

Training 

data 

Synthetic data 

(160,000) 

Rrs(555) 

7.7×10-4 0.091 0.016 0.85 

Validation 

data 

Synthetic data 

(40,000) 
7.8×10-4 0.089 0.019 0.84 

SBA data 

(202) 
1.1×10-3 0.020 0.0048 0.84 

MOBY 

(6,184) 
8.1×10-4 3.3*10-3 0.0013 0.086 

 875 

 876 

  877 
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Table 2. Statistical measures of UVISRdl after being applied to both synthetic and field 878 

measured datasets. 879 

 880 

(a): Synthetic dataset 881 

  882 

Data 

(Data Number) 
Sensor Band RMSD (sr-1) MARD bias (sr-1) MAURD R2 

Synthetic data 

(40,000) 

SeaWiFS 

360 1.1×10-4 2.3×10-3 2.3×10-6 0.023 >0.99 

380 5.7×10-5 1.7×10-3 3.8×10-7 0.015 >0.99 

400 1.2×10-5 7.6×10-4 1.2×10-6 0.0075 >0.99 

MODIS 

360 1.1×10-4 2.6×10-3 -2.2×10-7 0.026 >0.99 

380 5.3×10-5 1.4×10-3 -3.8×10-7 0.015 >0.99 

400 1.2×10-5 3.7×10-4 4.0×10-7 0.0038 >0.99 

VIIRS 

360 1.0*10-4 2.5×10-3 5.0×10-6 0.024 >0.99 

380 5.9×10-5 1.5×10-3 -1.3×10-6 0.015 >0.99 

400 1.4×10-5 6.2×10-4 1.4×10-6 0.006 >0.99 

 883 

 884 

  885 
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 886 

(b): Field dataset 887 

 888 

 889 

Data 

(Data Number) 
Sensor Band RMSD (sr-1) MARD bias (sr-1) MAURD R2 

SBA data 

(202) 

SeaWiFS 

360 3.4×10-4 0.098 1.1×10-4 0.094 >0.98 

380 2.2×10-4 0.041 -1.8×10-5 0.041 >0.99 

400 8.6×10-5 0.015 2.8×10-5 0.015 >0.99 

MODIS 

360 3.3×10-4 0.085 7.7×10-5 0.082 >0.98 

380 2.1×10-4 0.045 -8.7×10-6 0.045 >0.99 

400 8.8×10-5 0.020 -5.8×10-5 0.020 >0.99 

VIIRS 

360 3.5×10-4 0.095 1.2×10-5 0.091 >0.98 

380 2.1×10-4 0.041 -1.5×10-5 0.042 >0.99 

400 8.3×10-5 0.015 -4.7×10-5 0.015 >0.99 

MOBY data 

(6184) 

SeaWiFS 

360 1.1×10-3 0.076 9.0×10-4 0.072 >0.88 

380 6.1×10-4 0.038 4.6×10-4 0.037 >0.96 

400 1.8×10-4 0.011 5.7×10-5 0.011 >0.99 

MODIS 

360 1.2×10-3 0.083 9.9×10-4 0.078 >0.87 

380 5.6×10-4 0.035 4.1×10-4 0.034 >0.95 

400 1.9×10-4 0.012 9.4×10-5 0.012 >0.99 

VIIRS 

360 1.2×10-3 0.085 1.0×10-3 0.081 >0.87 

380 6.0×10-4 0.038 4.3×10-4 0.037 >0.95 

400 1.9×10-4 0.011 7.8×10-5 0.011 >0.99 

 890 
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 891 

Table 3. Statistical measures between matchup VIIRS and measured Rrs. N is the 892 

number of matchup measurements. 893 

 894 

 895 

Field data Band N RMSD (sr-1) MARD bias (sr-1) MAURD R2 

SBA  

360 

82 

0.0016 0.48 0.0005 0.40 0.74 

380 0.0015 0.39 0.0004 0.34 0.77 

400 0.0013 0.33 0.0002 0.31 0.80 

410 0.0012 0.30 0.0002 0.29 0.82 

440 0.0011 0.23 -0.00008 0.25 0.82 

490 0.0013 0.18 -0.0004 0.21 0.80 

MOBY 

360 

730 

0.0023 0.14 1.2×10-3 0.13 0.25 

380 0.0022 0.13 9.2×10-4 0.12 0.26 

400 0.0019 0.12 2.3×10-4 0.12 0.23 

410 0.0017 0.11 -3.2×10-5 0.11 0.22 

440 0.0013 0.11 -4.2×10-4 0.11 0.17 

490 0.00082 0.11 -3.9×10-4 0.12 0.06 

 896 

897 
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Figures: 898 

 899 

 900 

 901 

 902 

Fig. 1. Schematic chart of the deep-learning-based system for estimating Rrs(nbUV) using 903 

Rrs(visible): UVISRdl. 904 

 905 

  906 
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 907 

 908 

 909 

 910 

Fig. 2. Examples of Rrs spectra used in this study: (a) synthesized Rrs spectra for the 911 

development and validation of UVISRdl, and (b) measured Rrs spectra to evaluate UVISRdl. 912 

 913 

 914 

  915 
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 916 

 917 

 918 

 919 

 920 

 921 

Fig. 3. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the synthetic 922 

dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 923 

 924 
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 926 

 927 

 928 

 929 

Fig. 4. Relationship between Rrs(nbUV) and Rrs(440) of both synthetic and measured (SBA 930 

and MOBY) datasets: (a) Rrs(360) vs Rrs(440), (b) Rrs(380) vs Rrs(440), and (c) Rrs(400) vs 931 

Rrs(440). 932 

  933 
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 934 

 935 

 936 

 937 

 938 

Fig. 5. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured 939 

SBA dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 940 

 941 

  942 
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 943 

 944 

 945 

Fig. 6. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured 946 

MOBY dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400). 947 

 948 
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 951 

 952 

 953 

Fig. 7. Global distribution of seasonal composite Rrs(nbUV) for the period of October to 954 

December 2012 obtained from VIIRS: (a) Rrs(360), (b) Rrs(380) (white star showing 955 

measurements during November 2004), (c) Rrs(400), and (d) Rrs(410). 956 

 957 

 958 
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 959 

Fig. 8. Same as Fig. 7, except for showing Rrs(360) of three coastal regions. 960 

 961 
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 963 

 964 

 965 

 966 

Fig. 9. Locations of matchup field measurements (SBA and MOBY) to evaluate Rrs(nbUV) 967 

from VIIRS. 968 
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 972 

 973 

 974 

 975 

 976 

Fig. 10. Comparison between VIIRS and field measurements SBA Rrs: (a) Rrs(360), (b) 977 

Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490). 978 

 979 

 980 

 981 
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 983 

 984 

Fig. 11. Comparison between VIIRS and field measurements MOBY Rrs: (a) Rrs(360), (b) 985 

Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490). 986 
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 989 

 990 

 991 

 992 

Fig. 12. Global distribution of seasonal composite Kd(nbUV) for the period of October to 993 

December 2012 obtained from VIIRS: (a) Kd(360), and (b) Kd(380). 994 
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 997 

 998 

 999 

 1000 

 1001 

Fig. 13. Relationships between Kd(nbUV) and Kd(490) of global waters obtained from VIIRS: 1002 

(a) Kd(360) vs Kd(490), and (b) Kd(380) vs Kd(490). Color dots are for bottom depth > 1,000 1003 

m, and gray dots, for bottom depth < 1,000 m. The R2 values are for the data with depth > 1004 

1,000 m. 1005 
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 1008 

 1009 

 1010 

 1011 

 1012 

Fig. 14. Same as Fig. 13, except between Rrs(nbUV) and Rrs(440): (a) Rrs(360) vs Rrs(440), 1013 

and (b) Rrs(380) vs Rrs(440). Color dots are for data with bottom depth > 1,000 m, and gray 1014 

points for data with bottom depth < 1,000 m.  1015 
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 1018 

 1019 

 1020 

Fig. 15. Global distribution (left) and histogram (right) of URD(nbUV) between MODIS and 1021 

VIIRS for seasonal data of October–December 2012: (a) 360 nm, (b) 380 nm, and (c) 400 1022 

nm. 1023 
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 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

Fig. 16. Comparison of Rrs between MODIS and VIIRS (a, b), and between MODIS and 1032 

SeaWiFS (c, d). 1033 

 1034 
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